# Cocondensation Reaction of Arsine and Fluorine: Matrix Infrared Spectrum of AsH<sub>2</sub>F

Lester Andrews\* and Thomas C. McInnis

Received October 16, 1990

The cocondensation reaction between arsine and fluorine in excess argon produced major new product infrared absorptions at 2117, 2108, and 649 cm<sup>-1</sup> in solid argon at 12 K. Mixed and complete deuterium substitution showed that the former two As-H stretching bands are due to the vibration of two equivalent hydrogen atoms and that the 649-cm<sup>-1</sup> As-F stretching absorption is coupled to two equivalent hydrogen atoms, hence the identification of AsH<sub>2</sub>F. The spontaneous reaction is believed to proceed through AsH<sub>3</sub>F<sub>2</sub>, which was characterized by a 610-cm<sup>-1</sup> infrared absorption.

### Introduction

The increased reactivity of second-row hydrides as compared to first-row hydrides extends to third-row hydrides,<sup>1,2</sup> which can be demonstrated by cocondensation reactions of NH<sub>3</sub>, PH<sub>3</sub>, and AsH<sub>3</sub> with molecular F<sub>2</sub>. All of these reactions are rapid at room temperature; however, on 12 K condensation of the room-temperature reagents with excess argon, NH<sub>3</sub> and F<sub>2</sub> form a molecular complex, and PH<sub>3</sub> and F<sub>2</sub> react in a controlled manner to give PH<sub>3</sub>F<sub>2</sub>, PH<sub>2</sub>F, and PHF<sub>2</sub>.<sup>3,4</sup> Similar arsine reactions were done to test reactivity and to prepare the new reactive compound fluoroarsine, AsH<sub>2</sub>F. The only references to simple monosubstituted arsine compounds in the literature concern experimental and theoretical studies of the hydroxy analogue, arsinous acid, AsH<sub>2</sub>OH.<sup>5,6</sup>

## **Experimental Section**

The cryogenic apparatus and experimental techniques have been described in earlier papers.<sup>3-5</sup> Fluorine (Matheson) was diluted to  $Ar/F_2 = 50/1$ , 100/1, and 200/1 ratios in a passivated stainless-steel system used only for fluorine samples; care was taken to minimize water and HF impurity in the matrix samples. Arsine was prepared by adding 30% H<sub>2</sub>SO<sub>4</sub> to powdered Zn<sub>3</sub>As<sub>2</sub> in a 100-mL glass bulb under vacuum. The desired product gas was condensed on CaCl<sub>2</sub> pellets at 77 K, and the remainder was evacuated.<sup>5,7</sup> Several deuterium-enriched arsine samples were prepared by using D<sub>2</sub>SO<sub>4</sub> or H<sub>2</sub>SO<sub>4</sub> in D<sub>2</sub>O. Arsine samples were diluted with argon to Ar/AsH<sub>3</sub> = 50/1, 100/1, and 200/1 ratios and codeposited with,fluorine samples at rates of 2 mmol/h for 4-6 h on a 12 ± 1 K CsI window. Infrared spectra were recorded on a PE 983 spectrometer before and after sample annealing or photolysis using a high-pressure mercury arc. Wavenumber accuracy is better than 1 cm<sup>-1</sup>.

#### Results

Arsine and fluorine samples were diluted with argon and codeposited at 12 K. New absorptions for  $AsH_3$  and  $AsD_3$  reaction products will be described in turn.

AsH<sub>3</sub>. Seven codeposition experiments were done with AsH<sub>3</sub> and  $F_2$  by using different combinations of argon dilutions. Infrared spectra are illustrated in Figures 1a and 2a, and product absorptions are listed in Table I. In the As-F stretching region, strong new bands were observed at 693, 649, 631, and 610 cm<sup>-1</sup>. The As-H bending region revealed weak new bands at 984, 894, and 842 cm<sup>-1</sup>. In the As-H stretching region, strong new absorptions were observed at 2117 and 2108 cm<sup>-1</sup> and a weak new band was detected at 2099 cm<sup>-1</sup>. The HF stretching region revealed medium-intensity bands familiar to the HF system<sup>8</sup> at 3962 (A = absorbance = 0.2), 3919, and 3881 cm<sup>-1</sup>, a weak 3693 cm<sup>-1</sup> band due to the AsH<sub>3</sub>--HF complex,<sup>7</sup> and a new weak absorption at 3722 cm<sup>-1</sup>. The far-infrared region exhibited bands at 409 and 261 cm<sup>-1</sup> due to the AsH<sub>3</sub>--HF and N<sub>2</sub>--HF complexes, respectively.<sup>7-9</sup> The strongest water absorptions at 3756 and 1624

- (2) Agrawalla, B. S.; Setser, D. W. J. Phys. Chem. 1986, 90, 2450.
- (3) Andrews, L.; Lascola, R. J. J. Am. Chem. Soc. 1987, 109, 6243.
- (4) Andrews, L.; Withnall, R. Inorg. Chem. 1989, 28, 494.
   (5) Andrews, L.; Withnall, R.; Moores, B. W. J. Phys. Chem. 1989, 93,
- 1279.
  (6) Schneider, W.; Thiel, W.; Komornicki, A. J. Phys. Chem. 1990, 94, 2810.
- (7) Arlinghaus, R. T.; Andrews, L. J. Chem. Phys. 1984, 81, 4341.
- (8) Andrews, L.; Johnson, G. L. J. Phys. Chem. 1984, 88, 425.

Table I. Infrared Absorptions  $(cm^{-1})$  of New Products Formed upon Codeposition of Argon/Arsine and Argon/Fluorine Samples at 12 K

| $AsH_3 + F_2$     | $AsD_3 + F_2$     | identification <sup>a</sup>     |  |
|-------------------|-------------------|---------------------------------|--|
| 3962              | 2896              | HF, R(0)                        |  |
| 3919              | 2877              | HF, Q induced                   |  |
| 3881              | 2846              | $N_2$ HF                        |  |
| 3776              | 2771              | ?                               |  |
| 3722              | 2734              | AsH <sub>2</sub> F-HF           |  |
| 3693              | 2716              | AsH <sub>3</sub> HF             |  |
| 2117              | 1526 <sup>b</sup> | $AsH_2F(3)$                     |  |
| 2108 <sup>c</sup> | 1518°             | $AsH_2F(3)$                     |  |
| 2099              | 1513              | $AsHF_2(2)$                     |  |
| 984 <sup>6</sup>  |                   | $AsH_2F(3)$                     |  |
| 894               | 644               | $AsH_3F_2(1)$                   |  |
| 842°              | 606 <sup>b</sup>  | $AsH_2F(3)$                     |  |
| 693               | 698               | AsH <sub>x</sub> F <sub>y</sub> |  |
| 668               | 668               | $AsHF_2(2)$                     |  |
| 649 <sup>6</sup>  | 662 <sup>b</sup>  | $AsH_2F(3)$                     |  |
| 631               | 620               | AsH <sub>x</sub> F <sub>y</sub> |  |
| 618               | 590               | shoulder                        |  |
| 610               | 583               | $AsH_3F_2(1)$                   |  |
| 409               | 309               | AsH3HE                          |  |
| 261               | 212               | N <sub>2</sub> HF               |  |
|                   |                   |                                 |  |

<sup>a</sup> Identifications for hydrogen species also apply to the perdeuteriated species by replacement of H with D. (1), (2), and (3) refer to the species as identified in the text, figures, and equations. <sup>b</sup> Full width at half-maximum is  $2.0 \text{ cm}^{-1}$ . <sup>c</sup> Full width at half-maximum is  $3.0 \text{ cm}^{-1}$ .

cm<sup>-1</sup> showed less than 0.1 absorbance unit, indicating minimal water impurity in these experiments. The above new product bands did not appear in the spectrum of similar  $Ar/AsH_3$  samples deposited without fluorine. Finally, the HF impurity absorption intensity in similar  $Ar/F_2$  samples deposited without arsine was approximately 50% of the HF impurity absorption intensity observed in the arsine-fluorine codeposition experiments. On the basis of comparisons with earlier HF experiments,<sup>7</sup> the present HF impurity is 1–2% of the F<sub>2</sub> reagent concentration.

Similar experiments have been done with water and fluorine in this laboratory. Fluorine does not react with water on codeposition; full arc photolysis is required. In an experiment with water at the impurity level observed here from desorption of water from the walls of the vacuum chamber, photolysis produced weak  $H_2O/F_2$  product bands that are not common with the present arsine/fluorine experiments. Finally, a series of experiments<sup>7</sup> has been done with AsH<sub>3</sub> and HF by using HF concentrations 50–100 times greater than that of the HF impurity in the fluorine used here. The AsH<sub>3</sub>--HF complex products identified earlier are minor contributors to the present product spectrum.

The  $F_2/AsH_3$  mole ratio in the matrix was varied in this series of experiments. Increasing the  $F_2$  concentration at constant AsH<sub>3</sub> concentration increased absorbances of the product bands. The 693- and 631-cm<sup>-1</sup> bands were weak with  $F_2/AsH_3$  mole ratios <1, but their relative absorbances increased with  $F_2/AsH_3$  ratios >1, as shown in Figure 1.

Sample annealing into the 28-32 K range typically increased the weak bands due to HF complexes at the expense of isolated

<sup>(1)</sup> Manocha, A. S.; Setser, D. W.; Wickramaartchi, M. A. Chem. Phys. 1983, 76, 129.

<sup>(9)</sup> Andrews, L.; Kelsall, B. J.; Arlinghaus, R. T. J. Chem. Phys. 1983, 79, 2488.



WAVENUMBERS

Figure 1. Infrared spectra in the 1050-550-cm<sup>-1</sup> region following codeposition of arsine and fluorine samples at 12 K: (a)  $Ar/AsH_3 = 200/1$  and  $Ar/F_2 = 50/1$ , 15 mmol of each sample; (b)  $Ar/AsD_3 = 200/1$  and  $Ar/F_2 = 50/1$ , 17 mmol of each sample, approximately 90% deuterium enrichment. a donotes AsH<sub>3</sub>, b identifies AsH<sub>2</sub>D, c denotes AsHD<sub>2</sub>, and d identifies AsD<sub>3</sub>. Numbers refer to species formed in reactions 1–3. Absorbance scale: 0.0–2.0. Resolution: 0.5–1.0 cm<sup>-1</sup>.

HF. In addition, a 30% growth was found for the 894- and  $610\text{-cm}^{-1}$  bands (labeled 1 in the figures), the 2099- and  $668\text{-cm}^{-1}$  bands (labeled 2) were unchanged, and a 20% reduction was observed for the 2117-, 2108-, 984-, 842-, and 649-cm<sup>-1</sup> bands (labeled 3 in the figures). Mercury arc photolysis also substantiated this grouping of bands; the  $610\text{-cm}^{-1}$  band increased by 20% whereas the bands labeled 3 increased only 5% in absorbance, and the 693- and 631-cm<sup>-1</sup> bands were unchanged. The same behavior was found when photolysis was performed before annealing.

AsD<sub>3</sub>. Six experiments were performed with AsD<sub>3</sub> samples using two different deuterium enrichments. The spectra revealed DF at 2896, 2877, and 2857 cm<sup>-1</sup>, the N<sub>2</sub>- DF complex at 2846 and 212 cm<sup>-1</sup>, and the AsD<sub>3</sub>- DF complex at 2716 and 309 cm<sup>-1</sup>, demonstrating a reaction between AsD<sub>3</sub> and F<sub>2</sub>; the HF region revealed much weaker bands in the positions described above for AsH<sub>3</sub> experiments. New bands were observed at 2734, 2771, and 3776 cm<sup>-1</sup>, as are listed in Table I.

Figure 1b compares the spectrum in the As-F stretching region for the AsD<sub>3</sub> reaction with F<sub>2</sub>. Isotopic precursor bands are labeled a-d for AsH<sub>3</sub>, AsH<sub>2</sub>D, AsHD<sub>2</sub>, and AsD<sub>3</sub>, respectively.<sup>5,7</sup> The major new product bands at 662.0 and 654.2 cm<sup>-1</sup> bracket the sharp AsD<sub>3</sub> band at 657.9 cm<sup>-1</sup>; the sharp 649.0-cm<sup>-1</sup> band from the AsH<sub>3</sub> experiments was also observed. The relative intensities of the 662.0-, 654.2-, and 649.0-cm<sup>-1</sup> bands follow the degree of deuterium enrichment, the 662.0-cm<sup>-1</sup> bands being strongest with the higher and the 654.4- and 649.0-cm<sup>-1</sup> bands being stronger with lower deuterium enrichment. These three bands are appropriate for the As-F stretching fundamental of a molecule with two equivalent hydrogen atoms. The sharp 605.6-cm<sup>-1</sup> band exhibits constant relative intensity with the 662.0-cm<sup>-1</sup> band throughout the series of AsD<sub>3</sub> experiments. Other major bands in this region included a new band at 583  $cm^{-1}$  with a shoulder at 590  $cm^{-1}$  that behaved on annealing like the 610- $cm^{-1}$  band and 618- $cm^{-1}$  shoulder in the AsH<sub>3</sub> studies.

Figure 2c shows the As-D stretching region; strong new bands were observed at 1526 and 1518 cm<sup>-1</sup> with weaker new bands at 1522 and 1513 cm<sup>-1</sup>; new bands were observed at 2113 and 2099 cm<sup>-1</sup> in the As-H stretching region. Figure 2b shows the spectrum in both regions for a sample with less deuterium enrichment. Notice that the intermediate 1522-cm<sup>-1</sup> band is stronger than the 1526- and 1518-cm<sup>-1</sup> bands while the 1513-cm<sup>-1</sup> band is unaffected in the As-D stretching region and the 2113-cm<sup>-1</sup> band has 2117and 2108-cm<sup>-1</sup> shoulders while the 2099-cm<sup>-1</sup> band is also unaffected in the As-H stretching region. These observations reveal one mixed H/D absorption in the As-H stretching region at 2113 cm<sup>-1</sup> and one in the As-D stretching region at 1522 cm<sup>-1</sup> for this new species.

#### Discussion

Products of the arsine and fluorine codeposition reaction will be identified, and the reaction mechanism will be discussed.

**Identification.** The corresponding phosphine and fluorine matrix reaction products  $PH_3F_2$ ,  $PHF_2$ , and  $PH_2F$  are expected to be a model for the present studies.<sup>4</sup> Unfortunately, no data exist for any of the corresponding small  $AsH_xF_y$  species. The strongest evidence for a new species from the present experiments is for the identification of  $AsH_2F$  from the product bands labeled 3 in the figures.

The 2117-, 2108-, 984-, 842-, and  $649 \cdot \text{cm}^{-1}$  bands maintained constant relative intensities throughout this series of experiments, and thus these five bands are assigned to a single new species. The  $649 \cdot \text{cm}^{-1}$  band is the strongest of these absorptions (A =



Figure 2. Infrared spectra in the As-H and As-D stretching regions for arsine and fluorine samples codeposited at 12 K, with Ar/arsine = 200/1 and Ar/F<sub>2</sub> = 50/1: (a) AsH<sub>3</sub>; (b) mixed AsH<sub>x</sub>D<sub>y</sub>, approximately 65% deuterium enriched; (c) AsD<sub>3</sub>, approximately 90% deuterium enriched. Numbers refer to species formed in reactions 1-3. Absorbance scale: 0.0-3.0. Resolution:  $1-2 \text{ cm}^{-1}$ . The spectra in Figure 2 were recorded during the first half of sample deposition, except the inset scan in Figure 2a, which was recorded after full sample deposition. Product bands were stronger but noise was higher in these regions after full sample deposition.

absorbance = 0.66 in Figure 1a); in the same spectrum, the 2117and 2108-cm<sup>-1</sup> bands are 25% as intense as the 649-cm<sup>-1</sup> band. The 984- and 842-cm<sup>-1</sup> bands are weaker, with A = 0.03 and 0.04, respectively, in Figure 1a.

In the As-H stretching region, two bands at 2117 and 2108 cm<sup>-1</sup> below the strong stretching fundamentals of AsH<sub>3</sub> at 2150 and 2140 cm<sup>-1</sup> are assigned to the antisymmetric and symmeteric As-H stretching fundamentals of AsH<sub>2</sub>F. These bands shift to 1526 and 1518 cm<sup>-1</sup>, respectively, with an H/D ratio of 1.387, which is near the isotopic frequency ratio for arsine. Of more importance, each pair of isotopic stretching fundamentals is replaced by a single intermediate band in the only observed mixed H/D isotopic species at 2113 and 1522 cm<sup>-1</sup>. As is shown in Figure 2, with 65% deuterium substitution in the precursor, the 2113-cm<sup>-1</sup> band replaced the 2117- and 2108-cm<sup>-1</sup> bands in the As-H region and the 1522-cm<sup>-1</sup> band dominated the As-D product region, and with deuterium substitution increased to 90%, the 1526- and 1518-cm<sup>-1</sup> bands superseded the intermediate 1522-cm<sup>-1</sup> band. The observation of one As-H and one As-D stretching mode for the mixed H/D isotopic species indicates the involvement of two equivalent hydrogen atoms in the new molecule.

The strong, sharp  $649 \cdot cm^{-1}$  band is in the region below the stretching modes of AsF<sub>3</sub> at 731 and 689 cm<sup>-1</sup>.<sup>10</sup> The sharp 649-cm<sup>-1</sup> product band exhibits one mixed isotopic counterpart at 654 cm<sup>-1</sup> and a fully deuteriated counterpart at 662 cm<sup>-1</sup>, which indicates a small vibrational interaction with two equivalent hydrogen atoms and further characterizes the new product as a species with two equivalent hydrogen atoms. The 649-cm<sup>-1</sup> band

Table II. Infrared Absorptions  $(cm^{-1})$  for  $AsH_2F$  Isotopic Species,  $PH_2F$ , and  $AsH_2OH$  in Solid Argon

| AsH <sub>2</sub> F | AsHDF                                                   | AsD <sub>2</sub> F                                                                                                              | assignment                                                                                                                                                                                      | AsH <sub>2</sub> OH <sup>b</sup>                      |  |  |
|--------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| 2117               | 2113                                                    | 1526                                                                                                                            | $\nu_5(a'')$ , As-H(D) str                                                                                                                                                                      | 2086                                                  |  |  |
| 2108               | 1522                                                    | 1518                                                                                                                            | $\nu_1(a')$ , As-H(D) str                                                                                                                                                                       | 2081                                                  |  |  |
| 984                |                                                         |                                                                                                                                 | $\nu_2(a')$ , H-As-H(D)<br>bend                                                                                                                                                                 | 975                                                   |  |  |
| 842                |                                                         | 606                                                                                                                             | $\nu_3(a')$ , As-H <sub>2</sub> (D <sub>2</sub> ) def                                                                                                                                           | 807                                                   |  |  |
| 649                | 654                                                     | 662                                                                                                                             | $\nu_4(a')$ , As-F str                                                                                                                                                                          | 648                                                   |  |  |
|                    | AsH <sub>2</sub> F<br>2117<br>2108<br>984<br>842<br>649 | AsH2F         AsHDF           2117         2113           2108         1522           984         842           649         654 | AsH2F         AsHDF         AsD2F           2117         2113         1526           2108         1522         1518           984         842         606           649         654         662 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |  |

<sup>a</sup> Reference 4. <sup>b</sup> Reference 5.

is assigned to the As-F stretching fundamental in the  $AsH_3F$ molecule. Vibrational assignments for the  $AsH_2F$ , AsHDF, and  $AsD_2F$  isotopic species are summarized in Table II. Fluoroarsine is a pyramidal molecule with a plane of symmetry and six vibrational modes; only five of these were observed here.

The two weaker bands at 984 and 842 cm<sup>-1</sup> exhibit constant relative intensity with the stronger bands assigned above to  $AsH_2F$ . These bands are assigned to  $AsH_2$  bending and deformation modes, respectively. Note that the  $AsH_2F$  bands appear below the analogous bands of  $AsH_3$  at 1002 and 912 cm<sup>-1</sup>. In the  $AsD_3$  experiments, the sharp 605.6-cm<sup>-1</sup> band is appropriate for the fully deuteriated counterpart of the 842-cm<sup>-1</sup> AsH<sub>2</sub>F deformation mode. Interaction between the 662.0- and 605.6-cm<sup>-1</sup> fundamentals intensifies the latter and blue-shifts the former from its 649.0-cm<sup>-1</sup> position in  $AsH_2F$ .

The AsH<sub>2</sub>F fundamentals are also compared to PH<sub>2</sub>F and AsH<sub>2</sub>OH values<sup>4.5</sup> in Table II. The shift to lower wavenumbers from PH<sub>2</sub>F to AsH<sub>2</sub>F follows the relationships between PH<sub>3</sub> and AsH<sub>3</sub> and between PF<sub>3</sub> and AsF<sub>3</sub>.<sup>7,10</sup> The As-H stretching and

bending fundamentals for AsH<sub>2</sub>F and AsH<sub>2</sub>OH are quite similar as expected, and the As-F and As-O stretching modes are almost identical. These comparisons support the present assignments to the new molecule AsH<sub>2</sub>F.

The weak 2099-cm<sup>-1</sup> band in AsH<sub>3</sub> experiments has a single 1513-cm<sup>-1</sup> counterpart in AsD<sub>3</sub> studies that identifies the vibration of one hydrogen atom. These bands exhibit the same 1.387 H/Dratio as the stronger 2117- and 2108-cm<sup>-1</sup> product bands. Following the relationship between  $PH_2F$  and  $PHF_2$ , the 2099-cm<sup>-1</sup> band is assigned to the As-H stretch in AsHF<sub>2</sub>. A weak band at 668 cm<sup>-1</sup> in both AsH<sub>3</sub> and AsD<sub>3</sub> studies that remained unchanged with the 2099-cm<sup>-1</sup> band on annealing is tentatively assigned to one of the As-F stretching modes of AsHF<sub>2</sub>; the other As-F stretching mode is probably masked by different product absorptions. (This 668-cm<sup>-1</sup> band is not to be confused with the weak 663-cm<sup>-1</sup> band due to CO<sub>2</sub> impurity in solid argon).

The remaining weak 894-cm<sup>-1</sup> band and the strong product band at 610 cm<sup>-1</sup>, with a satellite at 618 cm<sup>-1</sup>, and deuterium counterparts at 590 and 583 cm<sup>-1</sup> are the only new bands that increase substantially on sample annealing; this suggests a simple reaction product. The 610-cm<sup>-1</sup> band is assigned to the antisymmetric As-F stretching mode of the new  $AsH_3F_2$  species with fluorine in the axial positions. The phosphorus analogue,  $PH_3F_2$ , prepared by the analogous  $PH_3$  and  $F_2$  reaction,<sup>4,11</sup> absorbed strongly at 755 cm<sup>-1</sup>. The pentafluorides  $PF_5$  and  $AsF_5$  are well-known and exhibit antisymmetric axial P-F and As-F stretching modes at 947 and 787 cm<sup>-1</sup>, respectively.<sup>12</sup> The trichlorodifluoroarsorane and -phosphorane compounds have both been observed, and the antisymmetric axial P-F and As-F stretching modes are 859 and 677 cm<sup>-1</sup>, respectively.<sup>13</sup> These values predict 595- or 627-cm<sup>-1</sup> absorptions for AsH<sub>3</sub>F<sub>2</sub> by using a simple ratio with  $PH_3F_2$ , which nicely bracket the observed 610-cm<sup>-1</sup> value assigned here to difluoroarsorane, AsH<sub>3</sub>F<sub>2</sub>.

The possibility that the 610- and 590-cm<sup>-1</sup> bands are due to  $AsH_2F$ - HF and  $AsD_2F$ - DF, respectively, instead of  $AsH_3F_2$  and AsD<sub>3</sub>F<sub>2</sub> must be considered because the stoichiometries are the same. On the basis of previous work with HF complexes,<sup>7</sup> the HF perturbation in an arsine base complex (the As lone pair is clearly more basic than F lone pairs in AsH<sub>2</sub>F) should not shift the As-F stretching mode more than 10 or 20 cm<sup>-1</sup> and certainly not from 649 to 610 cm<sup>-1</sup>. It is, therefore, unlikely that the 610-cm<sup>-1</sup> band is due to AsH<sub>2</sub>F--HF; the AsH<sub>3</sub>F<sub>2</sub> assignment is preferred.

Two other bands, 693 and 631 cm<sup>-1</sup>, show a higher order fluorine concentration dependence than the 649- and 610-cm<sup>-1</sup> bands. The observation of higher order reaction products reinforces the above interpretation of the 649- and 610-cm<sup>-1</sup> bands as arising from the reaction of one  $F_2$  molecule. One or both of the 693- and 631-cm<sup>-1</sup> bands could be due to  $AsH_2F_3$ .

Mechanism. The most important observation is the *controlled* spontaneous reaction of  $AsH_3$  and  $F_2$  during matrix formation to give the new molecule AsH<sub>2</sub>F, which is relaxed by the condensing matrix before decomposition. This parallels work with PH3 and contrasts similar studies with NH3, where photolysis was required to initiate the reaction to give  $NH_2F$ -HF.<sup>3,4</sup> The AsH<sub>3</sub> and  $F_2$  reaction gave the following three major products:

$$AsH_3 + F_2 \Rightarrow [AsH_3F_2]^* \Rightarrow AsH_3F_2 \qquad (1)$$

- (11) Seel, V. F.; Vellman, K. Z. Anorg. Allg. Chem. 1971, 385, 123.
   (12) Hoskins, L. C.; Lord, R. C. J. Chem. Phys. 1967, 46, 2402. (11)
- (13) Minkwitz, R.; Prenzel, H. Z. Anorg. Allg. Chem. 1989, 548, 103.

It is proposed that the initial energized intermediate species has the unstable structure with one axial and one equatorial fluorine since this structure would require minimum rearrangement for the original AsH<sub>3</sub> submolecule part of the AsH<sub>3</sub>F<sub>2</sub> species. In the case of  $PH_3F_2$ , ab initio calculations have shown that the one axial-one equatorial substituted isomer is less stable than the diaxial form.14

The energized intermediate species has three choices, as given in the above reactions. The intermediate can rearrange and relax to the more stable diaxial difluoro isomer (eq 1). It is noteworthy that this reaction takes place on diffusion of  $F_2$  in solid argon at 30 K. The lack of much reaction for PH<sub>3</sub> on sample annealing demonstrates that AsH<sub>3</sub> is slightly more reactive than PH<sub>3</sub> toward cold fluorine. The intermediate can eliminate  $H_2$  to give AsHF<sub>2</sub> (eq 2) or HF to give  $AsH_2F$  (eq 3). As was found in the analogous PH<sub>3</sub> study, on the basis of relative intensities of AsH<sub>2</sub>F and AsHF<sub>2</sub> product bands, HF elimination is by far the dominant decomposition pathway. Finally, there is no evidence for a reaction of sufficiently higher order to give AsF<sub>3</sub> as a product. Cocondensation with excess argon diluent effectively terminated the AsH<sub>3</sub> and F<sub>2</sub> reaction at the second-order stage, where AsH<sub>2</sub>F was the dominant product.

The HF present in the matrix sample is more than impurity in the  $F_2$  sample and in the vacuum system on the basis of similar AsH<sub>3</sub> and NH<sub>3</sub> experiments.<sup>3,7,15</sup> Hence, it must be concluded that reaction has occurred between  $AsH_3$  and  $F_2$  during sample deposition. The observation of DF in the AsD<sub>3</sub> experiments, which cannot be due to impurity in the system, clearly shows that reaction between AsD<sub>3</sub> and F<sub>2</sub> takes place during condensation of reagent samples. Some of the HF and DF byproducts form the AsH3--HF and  $AsD_3$ - -DF complexes characterized earlier.<sup>7</sup> It is suggested that the weak 3722-cm<sup>-1</sup> band, which increases on annealing, is due to the AsH<sub>2</sub>F--HF complex. This interaction brings together the products of reaction 3. It is seen that AsH<sub>2</sub>F is less basic than AsH<sub>3</sub>, on the basis of the 29 cm<sup>-1</sup> smaller displacement of HF in AsH<sub>2</sub>F--HF as compared to AsH<sub>3</sub>--HF in these arsine base complexes. Such is the case for NH<sub>2</sub>F and NH<sub>3</sub> complexes.<sup>3,15,16</sup>

Two experimental observations demonstrate the greater reactivity of AsH<sub>3</sub> over PH<sub>3</sub>. With O<sub>3</sub> matrix reactions AsH<sub>2</sub>OH was observed on sample cocondensation, but photolysis was required to produce  $PH_2OH_{2}^{5,17}$  Sample annealing to  $30 \pm 2 K$ increased the yield of  $AsH_3F_2$ , whereas  $PH_3F_2$  did not increase on a similar sample-warming operation.

#### Conclusions

The cocondensation reaction of  $AsH_3$  and  $F_2$  in excess argon gave AsH<sub>2</sub>F as the major reaction product. Matrix infrared spectra with partial and complete deuterium substitution provide identification for the new molecule fluoroarsine, AsH2F. The reaction apparently proceeds through an AsH<sub>3</sub>F<sub>2</sub> intermediate, and evidence for difluoroarsorane  $AsH_3F_2$  was also observed in the spectrum. The cocondensation process terminates the reaction at the bimolecular stage and traps the highly reactive  $AsH_2F$ species before it can eliminate HF, the most probable fate of  $AsH_2F$  in the gas phase.

Acknowledgment. We gratefully acknowledge financial support from NSF Grant CHE 88-20764.

- (15) Johnson, G. L.; Andrews, L. J. Am. Chem. Soc. 1982, 104, 3043.
- (16) Lascola, R.; Withnall, R.; Andrews, L. J. Phys. Chem. 1988, 92, 2145.
- (17) Withnall, R.; Andrews, L. J. Phys. Chem. 1987, 91, 784.

<sup>(14)</sup> Keil, F.; Kutzelnigg, W. J. Am. Chem. Soc. 1975, 97, 3623.